
Hardware Technologies
for High-Performance
Data-Intensive Computing

A
s the amount of scientific and social data
continues to grow, researchers in a multitude
of domains face challenges associated with
storing, indexing, retrieving, assimilating,
and synthesizing raw data into actionable

information. Combining techniques from computer sci-
ence, statistics, and applied math, data-intensive com-
puting involves developing and optimizing algorithms
and systems that interact closely with large volumes of
data.

Scientific applications that read and write large data
sets often perform poorly and don’t scale well on present-
day computing systems. Many data-intensive applica-
tions are data-path-oriented, making little use of branch
prediction and speculation hardware in the CPU. These
applications are well suited to streaming data access
and can’t effectively use the sophisticated on-chip cache
hierarchy. Their ability to process large data sets is ham-
pered by orders-of-magnitude mismatches between disk,
memory, and CPU bandwidths.

Emerging technologies can improve data-intensive
algorithms’ performance, at reasonable cost in develop-
ment time, by an order of magnitude over the state of
the art. Coprocessors such as graphics processor units
(GPUs) and field-programmable gate arrays (FPGAs) can
significantly speed up some application classes in which

data-path-oriented computing is dominant. Additionally,
these coprocessors interact with application-controlled
on-chip memory rather than a traditional cache.

To alleviate the 10-to-100 factor mismatch in band-
width between disk and memory, we investigated an I/O
system built from a large, parallel array of solid-state
storage devices. While containing the same NAND flash
chips as USB drives, such I/O arrays achieve significantly
higher bandwidth and lower latency than USB drives
through parallel access to an array of devices.

To quantify these technologies’ merits, we’ve created
a small collection of data-intensive benchmarks selected
from applications in data analysis and science. These
benchmarks draw from three data types: scientific imag-
ery, unstructured text, and semantic graphs representing
networks of relationships. Our results demonstrate that
augmenting commodity processors to exploit these tech-
nologies can improve performance 2 to 17 times.

COPROCESSORS
Coprocessors designed for data-oriented computing

can deliver orders-of-magnitude better performance
than general-purpose microprocessors on data-path-
centric compute kernels. We evaluated the benefits of
two coprocessor architectures: graphics processors and
reconfigurable hardware.

Data-intensive problems challenge conventional computing architectures with demanding CPU,

memory, and I/O requirements. Experiments with three benchmarks suggest that emerging

hardware technologies can significantly boost performance of a wide range of applications by

increasing compute cycles and bandwidth and reducing latency.

Maya Gokhale, Jonathan Cohen, Andy Yoo, and W. Marcus Miller
Lawrence Livermore National Laboratory

Arpith Jacob, Washington University in St. Louis

Craig Ulmer, Sandia National Laboratories

Roger Pearce, Texas A&M University

C O V E R F E A T U R E

	 32	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00 © 2008 IEEE

	 April 2008	 33

Graphics processors
The GPU, a commodity product that accelerates the

rendering of images to the display, has been highly opti-
mized for the computer-game industry to offer realis-
tic 3D rendering of fast-moving scenes. It offers a high
degree of data-parallel operation on floating-point data,
up to hundreds of Gflops with a single PCI-E board.
Responding to the need for general-purpose use of
graphics hardware, programming interfaces such as
Nvidia’s Compute Unified Device Architecture (www.
nvidia.com/object/cuda_home.html) expose the process-
ing cores to parallel GPU algorithms.

In this work, we used the Nvidia GeForce 8800 GTX
GPU. In contrast to previous-generation fixed-function
graphics pipelines, the 8800 has an array of 128 IEEE
754-compliant scalar floating-point units clocked at
1.35 GHz and grouped into clusters of 16. It has 768
Mbytes of RAM with a 384-bit memory interface and
86.4-GBps memory bandwidth. Our GPU benchmark
is written in Cg, which compiles into an OpenGL-sup-
ported assembly code and is vendor-neutral. The Nvidia
card is attached to a 3.0-GHz dual-core Xeon processor
via a PCI-E 16x slot.

Reconfigurable hardware
FPGA-based reconfigurable hardware provides direct

execution of an algorithm. Unlike fixed-function hard-
ware, reconfigurable logic can be reprogrammed an
unlimited number of times, allowing different algo-
rithms to execute on the same device.

The FPGA is a complex system-on-a-chip that com-
bines processors, on-chip RAM, specialized arithmetic
units, and reconfigurable logic. When an algorithm ker-
nel is mapped onto its hardware resources, an FPGA can
achieve a 10-to-100 times speedup over equivalent soft-
ware. Another advantage of FPGAs is that, because the
device is often used to communicate to the data source,
application-specific logic can be inserted into a pipelined
data stream. FPGAs are already available in the market-
place for data-intensive computing tasks such as bioin-
formatics, text processing, and relational databases.

In these experiments, we used the XtremeData
XD1000 system, shown in Figure 1, which features
a dual-core 2.2-GHz Opteron CPU and an Altera
Stratix EP2S180F1508-C3 FPGA. Each processor has
4 Gbytes of dynamic RAM (DRAM); the FPGA addi-
tionally has 4 Mbytes of static RAM (SRAM). The
Opteron and FPGA are on a dual-socket motherboard
and communicate via a noncoherent HyperTransport
(HT) link, with a bidirectional peak bandwidth of 1.6
GBps. The actual bandwidth achieved depends on the
FPGA clock speed. Bandwidth measurements of HT
communication between a test FPGA design and the
Opteron showed a rate of roughly 500 MBps. Our
FPGA application is written in VHDL and compiled
with the Altera tool chain.

Scientific Imagery Analysis
The Large Synoptic Survey Telescope (www.lsst.org)

will be a ground-based 8.4-meter, 102-degree-field device
sited on a mountain in Chile, and is expected to start
producing astronomical data in 2012. Processing LSST
data will be extremely challenging. The raw data from
the 3-Gpixel charge-coupled device camera is collated
at a rate of 500 MBps and must be preprocessed in real
time. Lawrence Livermore National Laboratory (LLNL)
is a member of the LSST Corporation and contributes to
the project’s camera design and data management.1

Lanczos resampling filter
Our image-processing benchmark, the Lanczos resam-

pling filter, is derived from SWarp,2 an application used
in parts of the LSST data-processing pipeline. SWarp
transforms images from the telescope to the sky tem-
plate, making it possible to compare a newly acquired
image with the associated sky template section and
discover anomalies such as supernova explosions and
gamma ray bursts.

The benchmark factors out a computationally expen-
sive and fundamental piece of the SWarp functionality
for implementation: gray-scale image resampling. The
input data is a gray-scale raster image (row-major order)
with 8 or 16 bits per pixel. The output is a gray-scale
image with 8, 16, or 32 bits per pixel. The typical SWarp
execution for LSST includes resampling a 16-bit input
into a 32-bit, floating-point output.

It took us approximately one month to develop the
Lanczos filter, including profiling SWarp to select the
benchmark, designing, writing, debugging, and perfor-
mance tuning.

Computational kernels
For each output pixel, SWarp applies a filter kernel

that takes a weighted combination of the input pixels,
specifically a Lanczos filter, to combine either 16 (4 ×
4), 36 (6 × 6), or 64 (8 × 8) input pixels to generate each

FPGA Opteron

SRAM

HyperTransport

DRAMDRAM

Figure 1. XtremeData XD1000 architecture. The system features
a dual-core 2.2-GHz Opteron CPU and an Altera Stratix
EP2S180F1508-C3 FPGA that communicate via a noncoherent
HT link. Each processor has 4 Gbytes of DRAM; the FPGA
additionally has 4 Mbytes of SRAM.

	 34	 Computer

output pixel. The Lanczos filter kernel is convolved with
the input pixels to generate the output pixels. Each input
pixel has a location (x, y) relative to the projection of an
output pixel into the input image. The weight used for
that input pixel’s contribution to the output pixel is

L x y
k x

k
x

x

k y
k(,)

sin() sin() sin(
= ×

π π

π

π
2 2

)) sin()
,

,

π

π
k

y

y

x k y k

2 2

< <

where k can be 2, 3, or 4 (the so-called Lanczos2, Lanc-
zos3, and Lanczos4 kernels), using 16, 36, or 64 input
pixels per output pixel, respectively. We’ve written four
resampling codes, one for each of these Lanczos convolu-
tion kernels, plus a simple nearest-neighbor filter, using
NVIDIA’s Cg programming language.

The Cg compiler compiles the code down to ARB
Fragment Program code, an OpenGL-supported assem-
bly code for the fragment programs on current GPUs
that is vendor neutral. Because we’re benchmarking the
recent NVIDIA 8800 GTX, which is a scalar GPU, it’s
not necessary to optimize the computation for the more
traditional four-way vectorized GPU. The philosophy
behind the NVIDIA 8XXX series is to provide more
scalar cores (128) rather than fewer vector cores, facili-
tating full utilization.

I/O methods
The SWarp implementation, which employs memory-

mapped I/O for large files, processes output pixels in
raster order, matching the order of the data in the disk
file; consequently, output is purely streaming, whereas
input requires more random access. However, to better
leverage the GPU’s significant processing power, mem-

ory bandwidth, and data-caching
capability, we programmed the
Lanczos filter to produce the out-
put data in 2D tiles. The bench-
mark generates each output pixel
in the tile in a separate execution
thread on the GPU.

Data flows from disk to main
memory, main memory to GPU
memory, GPU memory back to
main memory, and main mem-
ory back to disk. In each case,
the program specifies the data to
be moved from source to target
location as a 2D rectangle. If this
rectangle’s width is the same as
that of the source and target, the
data copy can occur as a single,
contiguous stream. However, if
the widths differ, the data copy
must occur in a strided fashion,
contiguous only at the level of

individual rows.
Strided copies incur additional overhead, the largest of

which are disk seeks if the striding occurs on the disk-file
end of a copy between main memory and disk. Striding
can also incur minor overhead when it occurs between
main memory and GPU memory. Note also that, whereas
support for strided copies is generally already built into
GPU drivers, it’s not built into the operating system’s file
I/O interface and therefore must be explicitly coded into
the benchmark using some combination of reads, seeks,
and buffering.

The computation proceeds one output tile at a time,
in row-major order. For each output tile, the program
determines the input data required and loads that rect-
angle of data from main memory to the GPU over the
PCI-E bus. The filter is then applied and the program
reads the data back from the GPU to main memory over
the PCI-E bus.

Performance evaluation
We used the Lanczos filter to assess the potential for

accelerating LSST image-processing tasks using GPUs.
Our investigation comprised numerous executions of the
benchmark and the original SWarp application. Figure
2 plots performance, as measured by the rate of data
output in MBps. For each execution, we chose a scale
factor, which is the ratio of output pixels to input pixels,
and a kernel size, which is the number of input pixels
combined to generate each output pixel.

GPU compute. The first column indicates the pure
computational rate of our GPU-based kernel implemen-
tation. In this execution, we kept the image resident in
memory and disabled data transfers to and from the
GPU. In lieu of data download from the GPU, we flushed

1

10

100

 1,000

10,000

O
ut

pu
t b

an
dw

id
th

 (M
Bp

s)

Kernel sizes (upper) and Upsampling factors (lower)

1 16 36 64 1 16 36 64 1 16 36 64

1 1 1 1 4 4 4 4 16 16 16 16

GPU compute
GPU + PCI-E
GPU + PCI-E + disk
SWarp

Figure 2. Image resampling bandwidths. The graph shows the rate of generated output
pixels in logarithmic scale as a function of upsampling scale factor and kernel size.

	 April 2008	 35

the pipeline to allow accurate measurement of the total
compute time.

Predictably, this rate decreases with increasing ker-
nel size. What might be more surprising is the dramatic
increase in compute performance as the scaling factor
increases. This is attributable to the highly effective
2D data (texture) cache on the GPU. As the scale fac-
tor increases, the filter repeatedly uses the same neigh-
borhood of input pixels to generate a neighborhood of
output pixels.

The GPU compute column most closely relates to
peak performance of the graphics hardware, analogous
to peak floating-point performance from a general-pur-
pose CPU. It exceeds 1 GBps for some kernel-size and
scaling-factor combinations.

GPU + PCI-E. The second column reports performance
when taking into account data transfers to and from the
GPU over the PCI-E bus. The time to read data back
from the GPU to the host generally dominates because

there’s more data to read back
from the GPU than to send, due
to the upsampling factor and
the doubling in bits (from 16 to
32) per pixel, and
raw download rates are typi-
cally slower than upload rates.

Performance exceeds 100 MBps for
all combinations of kernel size and scale factor, with the
best performance at 259 MBps for a kernel of one and
scale factor of 16.

GPU + PCI-E + disk. The third column reports the
benchmark’s overall performance on out-of-core data,
using a 2D strip representation to load and store the
data. The maximum output achieved is 73 MBps. For
the lowest scale factor of 1, this significantly decreases to
around 40 MBps, presumably because the filter requires
significant input data as well as output data bandwidth,
and the input and output files are sharing the same two-
disk redundant array of independent disks (RAID).
Experimentally disabling reading of input data from
disk increased performance to around 70 MBps.

SWarp. To measure real SWarp performance, shown
in the fourth column, we eliminated as many computa-
tions as possible that are extraneous to the benchmark
computation. In particular, we configured the resam-
pling to perform in the application’s PIXEL coordinate
system, thus avoiding use of any of the dozens of more
complex astrometric coordinate transformations pos-
sible. The range of speedups of the GPU implementation
compared to SWarp ranged from 9 to 30 times.

The need for oversampling and high-quality kernels
to produce excellent results argues that the tests with
larger scale factors and speedups are most applicable in
practice. SWarp can also be executed in parallel on mul-

•

•

tiprocessor and multicore machines, and it exhibited a
nearly two-times speedup over the listed results when
run on the test machine’s two processors.

Conclusions. The Lanczos filter within the original
SWarp implementation is purely CPU-bound; using the
GPU completely eliminated the CPU bottleneck. For
images that can fit into main memory such as small tiles
of LSST imagery, the DRAM ↔ PCI-E communications
bandwidth dominates performance. For out-of-core
imagery such as large tiles or the complete sky image, the
Lanczos filter is I/O-bound. The benchmark thus dem-
onstrates that using a commodity-parallel architecture
such as the GPU can provide substantial speedup over a
single-CPU implementation, up to the point where disk
I/O becomes the primary bottleneck. For the current test
system, the I/O limited the speedup to 30 times.

Unstructured Text Processing
Language classification is an increasingly important

task on the World Wide Web, where
a growing number of documents
are in a language other than Eng-
lish. It finds uses in search-engine
indexing, spam-filtering heuristics,
information retrieval, text mining,
and other applications that apply
language-specific algorithms. Lan-
guage classification is a key step in
processing large document streams

and is data-intensive.
While many solutions run on general-purpose proces-

sors, the growth of document sets has far surpassed micro-
processor improvements afforded by Moore’s law. FPGA-
based systems offer an alternative platform that enables
the design of highly parallel architectures to exploit data
parallelism available in specific algorithms.

Language classification using n-grams
A well-known technique to classify a text stream’s lan-

guage is to create an n-gram profile for the language.3
An n-gram is a sequence of characters of length exactly
n. N-grams are extracted from a string or a document
by a sliding window that shifts one character at a time.
An n-gram profile of a set of documents is the t most
frequently occurring n-grams in the set. The probability
that an input document is in a particular language is
determined by the closeness of the document’s n-gram
profile to the language profile.

In this work, we used Bloom filters4 to improve an
existing FPGA-based n-gram text categorizer, the HAIL
(hardware-accelerated identification of languages)
architecture,5 to build a highly scalable design. We
implemented our design in VHDL on the XtremeData
XD1000 development system. The time to select, imple-
ment, debug, and performance-tune the benchmark was
approximately six weeks.

Using a commodity-parallel
architecture such as the

GPU can provide substantial
speedup over a single-CPU

implementation.

	 36	 Computer

An n-gram-based classifier builds a document’s
n-gram stream by taking a sliding n-character window
across the text. It generates a language’s n-gram profile
by taking the top t n-grams—we selected 5,000 for our
benchmark—from a representative sample of documents
in that language. The classifier selects the language of an
unknown document by comparing its n-gram profile to
all the language profiles and selecting the language with
the highest match count.

Our design accomplishes n-gram tabulation using par-
allel Bloom filters as a probabilistic test for set member-
ship. It streams the n-gram to k parallel hash functions,
whose outputs address k separate 1 × m bit memories.
To add a new n-gram, the design sets each addressed bit
to 1. To test membership, the design reads all addressed
bits, and finds an n-gram present in the language profile
if all locations have 1 at that address. This technique
can give false positives due to the hash function but
won’t generate false negatives. Our parallel Bloom filter
implementation uses 64 Kbits (k = 4 hash functions, m
= 16-Kbit memories). The average accuracy rate for this
configuration is 99.45 percent.

Our design exploits parallelism at multiple levels.
First, there is a separate memory for each hash function,
so that all the hash functions can be applied in parallel.
Second, the memories are dual-ported, so that two dif-
ferent n-grams can be tested in a single clock cycle, as
Figure 3a shows. Finally, our design duplicates p classi-
fiers four times, enabling eight n-grams to be processed
every clock cycle, as Figure 3b shows.

Performance evaluation
We measured our implementation’s performance

using the JRC-Acquis Multilingual Parallel Corpus,
v3.0 (http://wt.jrc.it/lt/Acquis).6 This corpus is the body
of European Union law applicable to the EU member
states available in 22 European languages. We used 10
languages: Czech, Slovak, Danish, Swedish, Spanish,
Portuguese, Finnish, Estonian, French, and English. For

our tests we parsed a subset of the corpus containing
only the documents’ text bodies.

There was an average of 5,700 documents for each
language, with an average of 1,300 words per docu-
ment. The average size of a single language corpus was
48 Mbytes, and an individual document averaged 10
Kbytes. We used 10 percent of the corpus as the train-
ing set for each language and tested the classifier on the
remaining documents. To measure the system’s through-
put, we used the configuration with k = 4, m = 16 Kbits
accepting eight n-grams per clock, and running at a
clock speed of 194 MHz.

We measured the wall clock time for the transfer of
documents and receipt of results in memory. The mea-
sured time didn’t include the Bloom filter programming
time, which is a setup cost that can be amortized over
large runs. Also, we didn’t include the preprocessing step
to generate the n-gram profiles in the timing because it’s
a one-time cost prior to classification.

Figure 4 compares various throughput rates for our
FPGA-based design as well as software only.

FPGA only. The theoretical rate at which our design
can accept document n-grams is 194 MHz × 8 = 1,552
million n-grams per second. Because each n-gram corre-
sponds to a byte in the input stream, our design can per-
form language classification at a peak rate of 1.4 GBps.
This is well within the 1.6-GBps bandwidth provided
by the HT bus. However, the HT core of the Xtreme-
Data machine we used achieves only a maximum of 500
MBps and so limits the practical performance that our
design realizes.

FPGA + HT and FPGA + HT + I/O. By using asynchro-
nous direct memory access (DMA) in a multithreaded
communications interface to transfer data and control
between the Opteron CPU and FPGA, we achieved a
throughput rate of 470 MBps. When we included the
time to read documents from storage in the measure-
ments, the throughput was 93 MBps on a NAND flash
drive and 55 MBps on a local Serial ATA (SATA) disk.

1

P

Two
n-grams

Language
classifiers

Match
counters(a) (b) Parallel multilanguage classifier

FPGA

8
n-

gr
am

s/
cl

oc
k

1.6 GBps
HyperTransport

HT
core

(DMA)

Host
CPU

DDR memory

Figure 3. Parallel Bloom-filter-based n-gram classifier hardware. (a) Multilanguage classifier. (b) Parallel multilanguage classifier
on the XtremeData system.

	 April 2008	 37

Compared to HAIL, our equivalent FPGA + HT
hardware runs 1.45 times faster on 10 languages. While
HAIL can classify up to 255 languages at this rate, our
hardware is limited to between 10 and 30 languages by
the number of on-chip embedded RAMs. The advan-
tage of our design is that it’s both flexible and scalable,
allowing the designer to trade off the number of hash
functions with memory size. Also, in contrast to HAIL,
it uses only on-chip memory, eliminating the need for
specific external memory configurations.

Software. To compare the performance of our Bloom-
filter-based classifier to that of software, we measured
the system throughput of mguesser (www.mnogosearch.
org/guesser), an optimized version of the n-gram-based
text categorization algorithm. We ran mguesser on a
2.4-GHz AMD Opteron processor with 16 Gbytes of
memory, using 10 languages for identification and 81-
Mbyte-size documents.

Mguesser’s average throughput was 5.5 MBps, which
doesn’t include the time to read the documents from
disk; these were cached in memory before a timing run.
In comparison, our FPGA + HT implementation is 85
times faster, and our FPGA + HT + I/O implementation
is 17 times faster, than mguesser’s compute-only time.

Conclusion. As with the image-resampling bench-
mark, this experiment showed that coprocessor tech-
nology can eliminate the CPU bottleneck of compute-
intensive data analysis applications at a reasonable cost
in development time.

FLASH MEMORY I/O DRIVE
To effectively use coprocessors, the memory and I/O

systems must deliver and store data at the coproces-
sor’s rate. Many data-intensive algorithms interact with
large data sets that can’t be stored cost-effectively in
main memory. While coprocessors with application-
specific caches can accelerate in-memory computation,
the bandwidth gap between volatile and persistent
memory can greatly diminish the coprocessor advan-
tage, causing I/O operations to dominate many such
algorithms’ runtime.

Disk storage has dramatically increased in capacity
during the past decade, achieving a 60 to 100 percent
compound annual growth rate between 1996 and 2004.
However, latency and bandwidth have lagged, and access
times for rotating media are likely to stay flat for the
foreseeable future. In addition, large collections of disk
drives incur costs in reliability and power usage.

Flash architectures
Strong consumer demand for music products with

embedded mass storage has driven memory manufac-
turers to significantly lower the price and increase the
capacity of flash memory chips. Flash memory is a form
of nonvolatile storage in which charge trapped on a float-
ing-gate transistor represents a data value.

Charge is initially deposited on each transistor in a
section of the chip when an erase operation is performed,
then removed when a write operation of a logical “0”
occurs. Once a gate’s charge is removed, it can’t be
replenished until an erase operation takes place. Given
that erase operations can only be performed on large
regions (128 Kbytes) of a chip at a time, a flash device
can be viewed as an erasable form of write-once, read-
many (WORM) storage.

Memory vendors arrange floating-gate transistors in
large arrays of either NOR or NAND gate structures.
While NOR flash chips provide random byte access to
the user, NAND flash chips feature higher capacities and
better programming times.

The drawback of NAND flash chips is that they oper-
ate on data in page-sized quantities (2 Kbytes). Each time
a hardware controller issues a read request to a flash
memory chip, the flash memory chip must locate the
corresponding page in its storage array and transfer the
entire page to a special buffer before the data can be
moved off chip. This internal data transfer can take as
long as 25 µs. Once the transfer completes, the data can
be streamed out of the flash chip sequentially at a rate of
40 MBps—that is, 50 µs for a full page.

To increase yields, memory vendors typically pack
multiple flash dies on a single chip. For example, a 16-
Gbit flash chip from Micron Technologies consists of
a stack of four 4-Gbit die. To increase capacity for a
given printed circuit board (PCB) footprint, multiple
flash chips can be stacked on top of each other using
simple spacer devices. Consequently, a single socket on a
PCB can house a stack of 16 or more flash memory dies.
This vertical parallelism provides an opportunity to hide
access time, as each die can be issued its own memory
transaction, provided that no two dies simultaneously
assert data on the flash pins.

1

10

100

 1,000

10,000

Ba
nd

w
id

th
 (M

Bp
s)

Implementations

FPGA only
FPGA + HT
FPGA + HT + I/O
Software

Figure 4. Language classification bandwidths. The graph
compares various rates of n-gram processing in logarithmic
scale of our FPGA-based design as well as software.

	 38	 Computer

Manufacturers can likewise use horizontal parallelism
to scale bandwidth by using multiple flash memory chip
stacks on a PCB and striping data across the stacks. The
fact that flash memory chips employ a low pin count—15
pins for the user interface—makes it possible to utilize
a large number of stacks when flash-controller logic is
implemented with an FPGA or application-specific inte-
grated circuit.

ioMemory benchmark
Given the bandwidth and latency potentials of flash

memory, multiple vendors are building hard-drive
replacement products out of NAND flash parts. In 2007,
Fusion-io, which is developing ioMemory, a PCI-E-based
product, provided us with access to a beta prototype fea-
turing 32 Gbytes of NAND flash storage built on 16 sin-
gle-chip stacks of 2-Gbyte flash chips. A midsized Xilinx
FPGA holds the low-level flash controller hardware and
the PCI-E interface to the host. Fusion-io also provides
host device drivers to make the ioMemory appear to the
Linux kernel as a standard block device.

We performed multiple benchmarks to observe the
ioMemory’s low-level performance details. When sequen-
tially streaming through large files, it yielded 446 MBps
in read tests and 378 MBps in write tests. These speeds
were roughly four times faster than a pair of SATA hard
drives arranged in a software RAID 0. However, a ran-
dom read test demonstrated the true potential of flash
storage. In this test, multiple threads issued block read
requests to random locations within a 16-Gbyte file.
While the random access patterns limited the SATA hard-

drive RAID to 30 MBps, the ioMemory achieved
328 MBps.

Figure 5 presents the performance results for
different burst sizes and numbers of threads.
As these numbers indicate, moving from one
to two threads with the ioMemory gives a
sizable performance gain. This gain can be
attributed to the fact that the ioMemory can
process a small number of transactions con-
currently, thereby overlapping access times.
Performance decreased when more than two
threads were employed. Fusion-io attributed
this drop to limitations in the beta hardware’s
DMA controller that will be fixed in the final
product. Performance also dropped when
bursts exceeded 128 Kbytes. This drop can
be attributed to fragmentation, as the card
internally stores up to 128 Kbytes of data con-
tiguously. More recent versions of ioMemory
promise even better performance, as the hard-
ware has been scaled from 16 flash stacks to
20. This geometry scales theoretical read per-
formance from 640 to 800 MBps.

I/O-intensive sparse graph analysis
To investigate ioMemory performance on I/O-domi-

nated applications, we developed a graph analysis bench-
mark motivated by real-world applications of semantic
graph analysis, which is used to discover relationships
in large data sets. Graphs that represent interaction in
semantic networks can become extremely large, requir-
ing hundreds of millions of nodes. In practice, the cur-
rent size limit for graph analysis is 108 nodes, while the
projected need is 1012.

LLNL first demonstrated breadth-first search of a 3
× 109 node graph on the IBM BlueGene/L, the world’s
fastest supercomputer.7 A random graph of this size is
the largest that can fit in the machine’s 32,768-node
memory. Subsequently, LLNL processed a 1010-node
scale-free graph using a very different approach and
architecture. The breadth-first search was written as
SQL queries into a relational database that stored edges
in a table, and it used a 648-node Netezza server.

Our benchmark graph algorithm performs out-of-core
level-set expansion, a variant of breadth-first search. It
runs on a standard Linux machine and uses the ext3
file system. While graph traversal can result in random
reads to the file system, the out-of-core algorithm uses an
optimized file-based graph layout that attempts to place
adjacent vertices in the same disk block.

The algorithm’s ingest phase builds the graph. It reads
edges from external storage and places them in an in-
memory edge buffer, from which it forms adjacency lists.
It then places these lists in an in-memory adjacency buf-
fer, and when the buffers become full, merges them into
two files, a partition index file (PIF) and a partition file

 0

 50

 100

 150

 200

 250

 300

 350

 102 103 104 105 106 107

Ag
gr

eg
at

e
ba

nd
w

id
th

 (M
Bp

s)

Burst size (bytes)

ioMemory – 1 thread
ioMemory – 2 threads
ioMemory – 3 threads
ioMemory – 4 threads
RAID – 1 thread
RAID – 2 threads

Figure 5. Random burst read performance of the ioMemory benchmark
using multiple threads. Moving from one thread to two boosted
performance by 19 to 99 percent; due to limitations of the beta version’s
DMA controller, performance decreased when more than two threads
were employed.

	 April 2008	 39

(PF). The PIF holds vertices and pointers to their adja-
cency lists in the PF. In the search phase, the level-set
expansion benchmark reads the PF and PIF to derive
level set n + 1 from level set n.

Our experiment used two real graphs, the Inter-
net Movie Database (IMDB) graph (www.iruimte.
nl/graph/imdb.txt) with 3.5 million vertices and the
Computer Science Bibliograph (DBLP; http://dblp.unit-
rier.de/xml) with 1.2 million vertices and a synthetic
scale-free graph with 1 million vertices and an average
degree of 5. We measured runtime using six different
block sizes for the graph data file (256, 512, 1,024,
2,048, 4,096, and 8,192 bytes) and two different loca-
tions for the input data sets and temporary files—a
local SATA disk and ioMemory. The local disk was a
Seagate Barracuda 7,200 rpm (ST380815AS), with 3
Gbps SATA volume, capable of streaming 60 MBps to
Linux applications.

The ingest phase, which reads in the raw graph and
writes out the optimized graph layout, doesn’t benefit
from the NAND flash drive. However, the read-domi-
nated search phase showed up to a factor of two improve-
ment in runtime when the data set and graph files were
accessed from the ioMemory. Figure 6 compares the run-
time of the graph benchmark’s search portion for the
three graphs. Runtime is lower for all three graphs, with
the DBLP graph showing the greatest benefit—an aver-
age speedup of a factor of two. Although the ioMemory
bandwidth tests showed an order of magnitude improve-
ment between disk and ioMemory random reads, the
measured speedup reflects the fact that the graph algo-
rithm can exploit vertex locality in memory and there-
fore doesn’t need to access the drive continuously.

D ata-intensive problems challenge conventional
computing architectures with demanding CPU,
memory, and I/O requirements. Our experiments

to date suggest that emerging hardware technologies
to augment traditional microprocessor-based comput-
ing systems can deliver 2 to 17 times the performance
of general-purpose computers on a wide range of data-
intensive applications by increasing compute cycles and
bandwidth and reducing latency.

GPU and FPGA coprocessors can deliver one to two
orders of magnitude increase in compute cycles through
massive parallelism and application-specific caches,
while high-performance I/O systems based on solid-state
nonvolatile memory offer one to two orders of magni-
tude improvement in latency over enterprise-class hard-
disk drives.

Our experiments demonstrate the advantages of
using a coprocessor and NAND flash separately. In
addition, the language classification benchmark fur-
ther shows that combining the two technologies offers
a substantial benefit—a 1.75 speed increase by using

the ioMemory rather than local disk to stream data
to the coprocessor. Speedup was limited by having
to stage the data in the CPU’s memory before for-
warding it to the coprocessor. Our future work will
focus on methods to bypass the CPU memory and pass
data directly from the flash device to the coproces-
sor, thereby letting the coprocessor access the data at
closer to the raw NAND array rate. ■

Acknowledgments
We thank John Grosh, John Johnson, John May, David

Hysom, Don Dossa, Scott Kohn, Eric Greenwade, and
Lisa Corsetti for their contributions to the Storage Inten-
sive Supercomputing project at Lawrence Livermore

1 2
Block size
3 4 5 6

 20

 40

 60

 80

 100

 120

 140

 160

0

R
un

tim
e

(s
)

 20

 40

 60

 80

 100

 120

 140

 160

0

R
un

tim
e

(s
)

 20

 40

 60

 80

 100

 120

 140

 160

0

R
un

tim
e

(s
)

Local disk
ioMemory

(a)

(b)

(c)

Figure 6. Graph benchmark performance: local disk and
ioMemory. (a) DBLP graph, (b) IMDB graph, (c) synthetic
graph.

	 40	 Computer

National Laboratory. This work was performed under
the auspices of the US Department of Energy by LLNL
under contract DE-AC52-07NA27344.

Dedication
We dedicate this article to the memory of W. Marcus

Miller (19 Sept. 1957-19 Feb. 2008), our coauthor and
respected colleague at LLNL, without whose efforts this
work wouldn’t have been possible.

References
	 1.	R. Kolb, “The Large Synoptic Survey Telescope (LSST),”

white paper, LSST Corp., 2005; www.lsst.org/Science/docs/
LSST_DETF_Whitepaper.pdf.

	 2.	E. Bertin, “SWarp v2.17.0, User’s Guide,” Institut
d’Astrophysique & Observatoire de Paris, 7 Jan. 2008; http://
terapix.iap.fr/IMG/pdf/swarp.pdf.

	 3.	W.B. Cavnar and J.M. Trenkle, “N-Gram-Based Text Cat-
egorization,” Proc. 3rd Ann. Symp. Document Analysis and
Information Retrieval, Univ. of Nevada, 1994, pp. 161-175.

	 4.	B.H. Bloom, “Space/Time Trade-Offs in Hash Coding with
Allowable Errors,” Comm. ACM, vol. 13, no. 7, 1970, pp.
422-426.

	 5.	C.M. Kastner et al., “HAIL: A Hardware-Accelerated Algo-
rithm for Language Identification,” Proc. 2005 Int’l Conf.
Field Programmable Logic and Applications, IEEE Press,
2005, pp. 499-504.

	 6.	R. Steinberger et al., “The JRC-Acquis: A Multilingual
Aligned Parallel Corpus with 20+ Languages,” Proc. 5th Int’l
Conf. Language Resources and Evaluation, ELRA, 2006;
http://langtech.jrc.it/Documents/0605_LREC_JRC-Acquis_
Steinberger-et-al.pdf.

	 7.	A. Yoo et al., “A Scalable Distributed Parallel Breadth-First
Search Algorithm on BlueGene/L,” Proc. 2005 ACM/IEEE
Conf. Supercomputing, IEEE CS Press, 2005, pp. 25-35.

Maya Gokhale is a computer scientist at Lawrence Liver-
more National Laboratory (LLNL). Her research inter-
ests include storage-intensive computing systems, recon-
figurable computing, and parallel architectures. Gokhale
received a PhD in computer science from the University

of Pennsylvania. She is a Fellow of the IEEE. Contact her
at maya@llnl.gov.

Jonathan Cohen is a computer scientist at LLNL. His
research interests include computer graphics and visual-
ization, geometric algorithms, and parallel graphics archi-
tectures. Cohen received a PhD in computer science from
the University of North Carolina at Chapel Hill. He is a
member of the ACM. Contact him at jcohen@llnl.gov.

Andy Yoo is a computer scientist at LLNL. His research
interests include graph mining, scalable graph algorithms,
and data management systems for large-scale graphs. Yoo
received a PhD in computer science and engineering from
the Pennsylvania State University. He is a member of the
IEEE Computer Society and the ACM. Contact him at
ayoo@llnl.gov.

W. Marcus Miller (deceased) was a computer scientist
at LLNL. He received a PhD in computer science from
Colorado State University.

Arpith Jacob is a PhD student in the Computer Science
and Engineering Department at Washington University in
St. Louis. His research interests include the design of sys-
tolic arrays and heuristic architectures for sequence analy-
sis algorithms in computational biology. Jacob received
an MS in computer science from Washington University.
He is a student member of the IEEE. Contact him at
jarpith@cse.wustl.edu.

Craig Ulmer is a senior member of the technical staff
at Sandia National Laboratories. His research inter-
ests include reconfigurable computing, novel storage
technologies, and network interface processors. Ulmer
received a PhD in electrical and computer engineering
from the Georgia Institute of Technology. Contact him at
cdulmer@sandia.gov.

Roger Pearce is a graduate student in the Computer Sci-
ence Department at Texas A&M University. His research
interests include graph algorithms and robotics applica-
tions. Pearce is a student member of the IEEE Computer
Society. Contact him at rpearce@tamu.edu.

